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1. In order to explain certain laws governing the propagation of short 

acoustic waves in cristals, polycristalline metals and high polymers,it is 

essential to take account of the discrete nature of their structure, con- 

sisting as it does of sepata’te particles held together by complex forces 

of interaction. These particles may be individual molecules, Individual 

crystals in polycrystafline metals, etc. The essential difference between 

the continuous medium usually considered in the theory of elastfcity and the 

real system of separate particlesliesin the following. The displacement of 

particles in a continuous medium can be specified by a vector field u, and 

a small rotation, which when u is small may be found from the formula 

cf, = ‘/erotu (I.11 

If we treat the material as a system of discrete particles the displace- 

ment of their centers of gravity can be defined by a vector field u , and 

a small rotation about the center of gravity by a vector field @, which is 

klnematlcally independent of U . 

Furthermore, in the theory of a continuous medium the action of the medium 

on a small element isolated from it is determined by the stresses, or what 

amounts to the same, by the forces acting on Its faces, and the moment is 

calculated In terms of these forces. However, -If we treat a medium as a 

system of discrete particles, the action on one particle from its neighboring 

particles is determined by independent forces and moments. 

In what follows we shall approach the study of the behavior of a medium 

with a discrete structure on the basls of the theory of a continuous medium. 

In order to avoid the above differences between the classical continuous 

medium and the system of discrete particles we assume the continuous medium 
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to posses a number of properties which at first may appear somewhat unusual. 

We define small displacements of particles In the continuous medium by a 
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vector field U and a small rotation of these particles by a vector field 

@, which is Independent of u . The state of stress at any point In the 

continuous medium will be defined by the stress dladlc 7 and the dladlc of 

couple-stresses w . The elements of the stress dladic are the forces acting 

on the unit areas of the appropriate sections within the body. The elements 

of the diadlc of couple-stresses are the 

same sections. Body forces at any point 

the force vector K and the body-moment 

It Is of Importance In the subsequent 

the surfade and body forces do work only 

and that the surface and body moments do 

ments 8@. A similar approach to these 

moments acting on unit areas of the 

in the medium will be specified by 

vector c . 

theory to make the assumption that 

in the virtual displacements &I, 

work only In the virtual dlsplace- 

problems may be found In [l to 73. 

However, In a nbber of works [2 to 53 the kinematic hypothesis (1.1) Is 

retained side by side with the introduction of couple-stresses. 

& Let us Isolate from the medium a volume Y having a surface area S. 

In accordance with the above, at every point on the surface S the action 

of .the part of the medium situated outside S on the part Inside S is 

given by the stress vector 7, and the vector of couple-stresses w. ; at 

every point In the volume the body forces and moments have Intensities K 

and e respectively. 

For the Isolated volume of the medium to be in equilibrium It Is necessary 

and sufficient for the following conditions to be satisfied: 

\~,dcs+\ KdV=O 

\(rxs.+p,,)dS+\ (rxK+c)m=O 
b V 

(2-l) 

(2.2) 

We note that the following relations hold for the vectors of surface 

loading 1. and p. [4 and 81: 

7, = n-7, pn = n-p P-3) 

where n Is the unit normal to the surface S , whereas I and v are the 

dladlcs of stresses and couple-stresses. 

Substituting (2.3) Into (2.1) and (2.2) and transforming the surface lnteg- 

rals by the Gauss-Ostrogradskll formula, we obtain 

S-~-S s s s K&‘= n-~d,S + KdV= (v-7+K)dV= 0 (2.4) 
S V S V V 
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rxK -t c) dV = s n-(--xX++) dS+ 
S 

+\ (rxK i- 4 dV= \ [ye* (- Txr + p) + rxK + cl&‘= 0 (2.5) 
t 

where Q represents the Hamilton differential operator v = d/ dr. Hence, 

Since the volume V Is arbitrary, we obtain the differential equations of 

equilibrium 

V*T+ K=O (2.6) 

v*(- ?Xr + p) + rxK _I- c = 0 (2.7) 

In order to simplify (2.7) we use the formula [8] 

V-(7 x r) = (V-z) X r - TX (2.8) 

where 7X Is the vector of the dladlc r . We recall that we can obtain this 

by vectorlally multiplying the left-hand factors of.the dladlc by the rlght- 

hand, and adding the results. 

If we substitute (2.8) into (2.7) we obtain 

rX(v*7 + K) + 0-p + TX + c = 0 (2.9) 

which, on the basis of (2.6) can be considerably slmpllfled to become 

7+7*P+7X+C=O (2.10) 

Equations (2.6) and (2.10) are the required equations of equilibrium. Note 
that the stress dladlc 7 Is asymmetrical Since, from (2.101, its Vector IS 

not zero. This Is the explanation of the title - the theory of asymmetric 

elasticity [2]. 

Se In order to find the relation between the kinematic quantities u and 

@ and the force quantities I and u we use the principle of of virtual 

displacements. Assuming the existence of potential energy of elastic defor- 

mation of the medium, the density of which, u, depends on the field of 

small displacements u and the field of rotations @, we have 

'i (~~.6u + p,&D) dS -t \ (K.h + c~&D-- 6U)dV= 0 (3.1) 
t 

Here & Is a field of virtual displacements of particles within the 

medium and d@ Is a field of virtual particle rotations. Substituting (2.3) 

Into (3.1) and transforming the surface integral into a Volume integral, We 

obtain 

c 
iv*@ .6u + @ND) + K.6u + C.&D - 6U1 dV = 0 (3.2) 

G 
Since the volume v Is arbitrary we can set the expression under the 

Integral In (3.2) equal to zero, from which we can find the variation in the 

denslty of potential energy 



v qt4hl) = (v*T)*BU + 7**bp* (3.4) 

v* ($dm) = fvq&)*d@ +” p* l BxJfw (3.5) 

!T!he secoti txrm in the right-hand sPde of [3.&f is the double so&W pro- 
duct 3f the diatics T and 6vu*, In such a multiplioatlon the right- and 
left-hand factors respectively of the diadlcs of the cofactors multiply sca- 
larly. &abstituting (3.4) into (3.3) we obtain 

PIU = (v4 f R).Gu + ($+a -i_ 6)*&B -f 2* +qu* + ff-= 4@* fMf 

ITaking u#e of the equilibrium equationa we can re&ucc this expressfan to 
the form 

IW 2 - Q.&G.) + T* +77u* + p. l B$Da&* (3.7) 

Corresponding to the vector @* we introduce an antirrynkmetric dXadic QtA, 
whose vector is equal to @, d direct check shows t;ftat @BA Is deSin& by 
the formula 

UP= -+1x@ (3.8) 

where 3 is the unit diadic. 

By deSin*tion we have 

@xA=@ WQ 

S%mmffarXy, we can eatablfeh the sntlaymmetrfc eowanent of GM stress 
diadlc Srom the value ~)f Q : 
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Comparing (3.15) and (3.13), we arrive at the general expression for the 
law of elastic deformation 

(3.16) 

From now on we shall confine our attention to small deformations In an 

Isotropic medium with mirror symmetry of Its properties. Since the medium 
Is Isotropic the potential energy must depend only on the Invariants of the 

dladlcs A and M . But since the deformations are small It Is sufficient 

to retain In the potential energy only second-order terms, and assume that 

first-order terms are eliminated by an appropriate choice of the reference 

origin of the displacements u and rotations 0. Therefore, In deriving 
an expression for the density of potential energy, of the six lnvarllnts of 

both dladlcs A and W , we can use only the first and the second scalar 

lnvarlants and vector lnvarlants. Note that the products of the first sca- 

lar or vector lrlvarlants of different dladics cannot appear In the expression 

for u , since the dladlc A Is polar and the dladlc M Is axial. 

Thus the specific potential energy of the medium may be written In the 

form 

+-!j--&MS~gII~~MS+~MS..MS-.eMA..MA (3.17) 

where the Index S Indicates symmetric components of dladlcs and the Index 

A 

e 

In 

of 

Indicates antisymmetric components. The coefficients X, p, (I, 0, y and 

are the six el&stlc characteristics of the lsotroplc medium. We see that 

Expression (3.17) they are multiplied by linearly Independent lnvarlants 

the dladlcs A and M . 

Substituting (3.17) into (3.16), we obtain the law of small elastic defor- 

mations equivalent to the usual Hooke's law 

~=hII-A~+2p.h~+2aA~ (3.18) 

p = PII - l MS + 2yMs + 2eMA (3.19) 

4. Equations (2.6), (2.10), (3.12), (3.18) and (3.19) constitute the 

complete system of equations of the linear theory of elasticity, which takes 

Into account rotational Interaction between particles. For certain values 

of the parameter (I this system can be reduced to the classical equations 

of the theory of elasticity and the equations of the theory of couple-stresses 

considered In [2 tc 51. 

For instance, It follows from (3.18) that If a = 0 the stress dladlc 

becomes symmetrical, and by virtue of (3.12) assumes the form 

s = hIV-u + 2p (ogS (4.1) 



Xquations (4.1) and (2.6) fern a system of equations of the classical 
theory of elasticity 191, in which X and p are the usual Lam6 parameters. 

In this case Equations (3.19) and (2.10) comprise an Independent system for 

the determination of the particle rotations. 

Consider now the case when a + - . Since the stresses must be finite, 

we have 
lim 2aAA = TA, limAA= 
o+Eo I-WC0 (4.2) 

where ZA is an antisymmetric dladic. 

It follows from the second relation of (4.2) that 

lim AxA = 0 
lZ+a, 

which, on the basis of (3.121, gives 

@ = Qv x u (4.3) 

Substituting (3.12) and (4.3) Into (3.18) and (3.191, we obtain 

z = hIv*u + 2p (vu)s + ItA 

p=~(v’c7xu)s+ e(vvxu)*=~Vvxu+~Vxuv (4.4) 

Xquatlons (2.6), (2.10) and (4.4) have been studied In [3 to 53. 

The system of equations (2.61, (2.10), (3.12), (3.18) and (3.19) must be 

provided with boundary conditions. If these are force conditions then sur- 

face loads n . 7 and n l u must be specified on the surface of the elas- 

tic body, when n Is the unit normal to the surface. If the conditions are 

kinematic, displacements u and rotations # must be specified on the sur- 

face. If boundary conditions and bode forces X and o are specified and 

the density of potential energy Ir is a positive definite quadratic rorm, 

then the solution of the above system of equations 1s unique. !l!his theorem 

may be proved for the present case In the same way as in the calssicaltheory 

of elasticity. 

Substituting (3.18), (3.19) and (3.12) into the equilibrium equations 

(2.6) and (2.10), we obtain equations in the displacements u and rotations 

@ analogous to the Lame equations 

(h-k2p)VV~u-(p+a)Vx(Vxu)+2uVx(9+K = 0 

(P + 2r)VV*@--((r + E)Vx(Vx@)+ 2aVxu-44a@+c=O (4.5) 

In the derivation of these equations the following expressions for the 

symmetric and antisymmetrlc components of the diadics b and Id and for the 

vector invariant of the diadlc I were used 
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As=1/2(vu-uuo)+uo=--/21x(T7xu)+u~ 

MS= --/&(y~xtD)+fDv 

AA=--/JXA,= --/Jx(~xu-2aq (4.6) 

M” = -+1x (vx@) 

T,=2aA,==2a(Y7xu-2aq 

In addition, the elastic characteristics A, v,..., E were assumed to be 
constants. 

5. Let us consider the propagation of waves In an infinite dynamically 

Isotropic elastic medium. In this case, for the body forces in Equations 

(4.5) we take the Inertia forces 

K=-pg, 
. aw 

C=-lm (5.1) 

Here p is the density of the medium and J Is a special dynamic pro- 

perty of the medium equal to the product of the moment of Inertia of a par- 

ticle about an axis passing through its center of gravity and the number of 

particles per unit volume. Substituting (5.1) into (4.5), wefindthedynamlc 

equation of the medium 

(A + 2p)vv*u-(p + a)Vx(Vxu)+2avxcD-pp=o 

(p $- 2T)~v.clt,-((r + ~)~~(v~~)+2avxu-4db-j~~=O 
(5.2) 

We express the solution to this system in the form 

u=~cp+vxH, v.1~ = 0 

0= Vp$@,,, v*a$ = 0 
(5.3) 

Substitution of (5.3) into (5.2) yields 

v[(B + 27) v2J1 - 4ct$ - j ;T] + [( y + E) +I$ - 2c@H - 

-4dD,-i~]=o 
(5.4) 

We see that the dynamic equations of the medium will be satisfied com- 

pletely if r+,$, H and a)1 satisfy Equations 

(A + 24 v*cp - p $ = 0, (a + 279 a** - 4ag - j 2 = 0 (5.5) 

(~+a)v2H+2acD,-p?&0 (5.6) 

(7, j e) v2U$ - 2av2H - 4&D,, - j$ = 0 (5.7) 
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The first of Equations (5.5) determines the behavior of an expansion wave 

in the medium and the second, a rotation wave In which the particles undergo 

rotation but not translation. Equations (5.6) and (5.7) define distortion 

waves. If we eliminate the vector aD, from these equations, we obtain a 

single equation for the distortion wave 

{[ir + E) 0’ - 4a - i $1 [(IL + a) v - pg] + 4a2Vaj H = o (5.8) 

Let us consider each of the waves separately. We shall confine our 

attention to plane waves, propagating, say, along the x-axls. We assume 

cp = &,J&(Z-CO = A&x-4 (5.9) 

Here A 1s the wave amplitude, 5 the wave number, c the phase velocity 

and UI the frequency of osclllatlons of particles in the wave. We substl- 

tute (5.9) into the first of Equations (5.5) to find the phase velocity of 

the wave 
9 = cl” = S$ (5.10) 

The same result Is obtained In the classlcal theory of elastlclty. 

We now substitute a solution of the type (5.9) into the second of Equa- 

tions (5.5) to find the relation between the phase velocity and the wave 

frequency ~1 . We obtain 

o‘k$ 
c* =p 

02 - CO*1 
(5.11) 

It follows from (5.11) that 

frequencies higher than W+ . 

In order to Investigate the 

H= 

a travelllng rotation wave can exist only at 

As UJ + = the phase velocity tends to cS . 

behavior of distortion waves, we set 

&iE(s-cl) = B,#x-of) (5.12) 

where B Is a constant vector which defines the direction and intensity of 

motion of the particles. Substituting (5.12) Into (5.8) we obtain the fol- 

lowlng equation for the square of the wave number: 

G2CP2 (E”)” + [m*2c22 - CO2 (c32 + Q)] (E”) - Ci?(w*2 - 02) = 0 (5.13) 
where 

2-- p 
c2 --T, 

c32 - P + a c42 _ T i- E 4a 
_- 

P ’ --y-v a*? zzz - 
I 

(5.14). 

The dlscrlmlnant of equation (5.13) may be written as 

D = [ 69 (c32 - Cd”) - o*2c22]2 + 40%*2c,2 (Q - cz2) (5.15) 

It follows that It Is positive, and therefore for any III Equation (5.13) 

has two different real r-oots pa. By means of Vleta’s theorem It can easily 

be proved that for UJ < UJ,, Equation (5.13) has one positive root 5’, and 
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for u2 2 u1+ both roots are paeftive. Consequently, for iit -z UI+ tkwe exists 
one travelfing d%stortion %&ve and for pr > m* there exist two such waves, 

For small frequencies we have the fal- 
z lowing approximate value for the posi- 

tive root of Equation (5.13): 

"2, I02 
5 -2 (s.46) 

We se12 from,this that for low fre- 

quencies the phase velocity of the 

distortion wave Is approximately equal 

to oar which coincides wSth the clas- 

sical result. For high frequencies 

an aaymptot;ic solution of Equation 

(5.13) gives two values foe the wave 

4 number 

FIWTI the foregaine; we may conclude that the relation between the phase 
velocity of 8 distortion w8ve and frequency must be of the form expressed 

In Fig,l, !Phls figure showa that for w- c UI~ the phase velocity increases 

with increase in ut If oe'rni~$o,,o,j and decreases if ca> min[cstozj. 

This conclusion Ita at v8rianCe x2tn the assertion of E&&lln c4j th8t t-he 

phase velocity of a diatOrtiOn #We mUSt increase under 8ny ConditiOnS with 

increase in w8ve frequency. 

1. 

2. 

3. 

4. 

5. 

6. 

8. 

Coseerat, g and F,, Th&orle des corps ffeforma~les, Paris, I%%. 

ffrioll, G., Elasticita asimmetrlca. Ann.mat,pusa ed appl., Ser.IV,Vol.50, 
1960. 

hero, B.L. and KuvahZnskll, E.V., Qsnovnye urvnenlla teorill uprugoatl 
sred a vrashchatel'nym vzaimo&ePstviem cha6+tita @?undamental eqUat,lonB 
of the theory of elasticity for media with rotational interaction of 
parCit;icfee). Fizika toerdogo tela (fhystcs of solids), Vo1.2, tB 7,1960, 

Mitxdin, R-D. and Weraten, H.F., Effects of couple-stresses fn line8r 
elasticity, hroh.Rat .Mech.Anal., Vol.11, NB 5, 1962. 

'hupin, R.A., E&et& materials with couple-stresses. Arch,Rat.Mech. 
Anal.. ~01.11, ~15, 1962. 

Schaefer, Ii., Verrsuch einer Elarrtisitgtstheorie des zweidimensionalen 
abenen ~os~e~ato~o~t~u~s* Miscellanen der Angem8ndten Mechanik. 
Featechr~ft 1J. Tolfalen, 1962, 

Kuvshinekii B.V. and hero, B.L., Kontinuaf'n$ia teoriia a~~~~tr~chesko~ 
uprugosti. U&et vnutrennego vrashcheniia (Continuum theory of asym- 
metric elasticity with account of internal rotation). Pizika tverdogo 
t&a (Physics of solids), Vol.5r @' 9, 1963. 

Laglxlli, K., Vektornoe ischlalen&e (Vector An8lysSs). Gostechiedat,l936. 



9. Lur’e, A.I., Prostranstvennye zadachl teorll uprugostl (Three-dimensional 
Problems of the Theory of Elasticity). Gostekhlzdat, 1955. 

Translated by J.K.L. 


